

The **SF110** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) filter in a low-profile metal **F-11** case with center frequency 110.000 MHz.

1. Package Dimension (F-11)

Pin	Configuration			
1	Input / Output			
4	Output / Input			
2/3	Case Ground			

Dimensions	Data (unit: mm)			
А	11.0±0.3			
В	4.5±0.3			
С	3.2±0.3			
D	0.45±0.1			
Е	5.0±0.5			
F	2.54±0.2			

2. Marking

SF110

Color: Black or Blue

3. Test Circuit

4. Typical Frequency Response

5. Performance

5-1. Maximum Ratings

Rating	Value		
RF Power Dissipation	P	0 dBm	
DC Voltage	$V_{ m DC}$	10 V	
AC Voltage	V_{PP}	10V 50Hz/60Hz	
Storage Temperature Range	$T_{ m stg}$	-40 to +85 ℃	
Operating Temperature Range	T_{A}	+13 to +45 ℃	

5-2. Electronic Characteristics

Characteristic		Minimum	Typical	Maximum	Unit
Nominal Center Frequency	$f_{\mathbb{C}}$	109.97	110.000	110.06	MHz
-3dB Bandwidth	BW	250	320		kHz
Insertion Loss	IL		3.5	4.5	dB
Relative Attenuation (relative to <i>IL</i>) 1) $f_C \pm 1.5$ MHz $f_C \pm 1.5$ 2) $f_C \pm 1.5$ MHz $f_C \pm 75$ I		30 50	35 55	 	dB
Aabsolute Delay			3	3.5	usec
Passband variation			2	2.5	dB
Temperature Coefficient			18		ppm/°C
Package Size	F11				

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

6. Reliability

6.1 Mechanical Shock

The components shall remain within the electrical specifications after 1000 shocks, acceleration 392m/s², duration 6 milliseconds.

6.2 Vibration Fatigue

The components shall remain within the electrical specifications after loaded vibration at 20 Hz, amplitude 1.5mm, for 2 hours.

6.3 Terminal Strength

The components shall remain within the electrical specifications after pulled 2 Kgs weight for 10 seconds towards an axis of each terminal.

6.4 High Temperature Storage

The components shall remain within the electrical specifications after being kept at the 85°C±2°C for 48 hours, and then kept at room temperature for 2 hours.

6.5 Low Temperature Storage

The components shall remain within the electrical specifications after being kept at the $-25\%\pm2\%$ for 48 hours, and then kept room temperature for 2 hours.

6.6 Temperature Cycle

The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing (one cycle: 80° C for 30 minutes \rightarrow 25 °C for 5 minutes \rightarrow -25 °C for 30 minutes) than kept at room temperature for 2 hours.

6.7 Solder-heat Resistance

The components shall remain within the electrical specifications after dipped in the solder at 260° C for 10 ± 1 seconds, and then kept at room temperature for 2 hours. (Terminal must be dipped leaving 1.5 mm from the case).

6.8 Solder ability

Solder ability of terminal shall be kept at more than 80% after dipped in the solder flux at $230^{\circ}C \pm 5^{\circ}C$ for 5 ± 1 seconds.

7. Remarks

7.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

7.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.

7.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.

© NEDI 2013. All Rights Reserved.

- 1. The frequency f_C is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50 Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 5. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 6. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 7. For questions on technology, prices and delivery please contact our sales offices or e-mailwinnsky@winnsky.com